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Abstract

Parallel input/output characterization studies and experiments with flexible resource
management algorithms indicate that adaptivity is crucial to file system performance. In this
paper we propose an automatic technique for selecting and refining file system policies
based on application access patterns and execution environment.  An automatic
classification framework allows the file system to select appropriate caching and
prefetching policies, while performance sensors provide feedback used to tune policy
parameters for the specific system environment.  To illustrate the potential performance
improvements possible using adaptive file system policies, we present results from
experiments involving classification-based and performance-based steering.

1.  Introduction

Input/output performance is the primary performance bottleneck of an important class of
scientific applications (e.g., global climate modeling and satellite image processing).
Moreover, input/output characterization studies such as Crandall [1] and Smirni [2] have
revealed that parallel applications often have complex, irregular input/output access patterns
for which existing file systems are not well optimized. Experience has shown that a few
static file system policies are unlikely to bridge the growing gap between input/output and
computation performance.  In this paper we propose an automatic technique for selecting
and refining file system policies based on application access patterns and execution
environment. Knowledge of the input/output access pattern allows the file system to select
appropriate caching and prefetching policies while the specific execution environment
determines what policy refinements are necessary to further improve performance. For
example, a sequential access pattern might benefit from sequential prefetching. The
available memory and access latencies determine the quantity of data that should be
prefetched. By being responsive to both application demands and system environment, this
approach can provide better performance than a single static file system policy.

                                                
* Supported in part by the National Science Foundation under grant NSF ASC 92-12369, by the National
Aeronautics and Space Administration under NASA Contracts NGT-51023, NAG-1-613, and USRA 5555-
22 and by the Advanced Research Projects Agency under ARPA contracts DAVT63-91-C-0029, DABT63-
93-C-0040 and DABT63-94-C-0049.



494

Adaptive file system policy controls rely on continuously monitoring access patterns and
file system performance. We obtain a qualitative access pattern classification either through
automatic analysis of the input/output request stream or via user-supplied hints. We also
continuously monitor file system performance sensors (e.g., cache hit ratios, access
latencies, and request queue lengths). The values of these sensors, together with the access
pattern, are used to select and tune specific file system policies. For example, the file
system can enable prefetching when the access pattern is sequential, using the interaccess
delays determine how much data to prefetch.  Updated performance sensor values or
changing access pattern classification may result in additional refinements to file system
policies.

The remainder of this paper is organized as follows. In §2 we give a high-level overview of
the adaptive file system infrastructure.  Validation of these concepts requires an
experimental framework; we have implemented adaptive file system policies within a
portable, user-level file system called the Portable Parallel File System (PPFS) Huber [3],
described in §3. Our system has two major components; in §4 we discuss how one
automatically classifies user access patterns and uses this information to select file system
policies. In §5 we describe how to use an input/output performance summary  generated
from sensor values to select file system policies and parameters that should be modified to
improve performance. Finally, §6-§7 place this work in context, summarize our results,
and outline directions for future research.

2.  Adaptive Steering

Given the natural variation in input/output access patterns, it is unlikely that one, static,
system-wide set of file system policies will suffice to provide good performance for a
reasonable range of applications. Even in a configurable environment, a priori identification
of effective file system policies is difficult because application access patterns are
sometimes data dependent or simply unknown. Furthermore, input/output requirements are
a complex function of the interaction between system software and executing applications
and may change unpredictably during program execution.  We believe that integration of
dynamic performance instrumentation and automatic access pattern classification with
configurable, malleable resource management algorithms provides a solution to this
performance optimization conundrum. Below, we describe the two major components of
this approach.

2. 1.  Classification-Based Policy Selection

Parallel file system research such as Patterson [4], Kotz [5], Krieger [6], and Grimshaw
[7] has demonstrated the importance of tuning file system policies (e.g., caching,
prefetching, writeback) to application access patterns.  For example, access pattern
information can be used to guide prefetching, small input/output requests can be aggregated
and large requests can be streamed.
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One intuitive way to provide the file system with access pattern information is via user
supplied hints, or qualitative access pattern descriptions, for each parallel file.
Unfortunately, this approach requires ongoing programmer effort to reconcile the hints
with code evolution. Inaccurate hints can cause performance problems if the file system
selects policies that are unsuitable for the actual access pattern.

Our solution to this dilemma is to automatically classify access patterns during program
execution. This approach requires no programmer intervention and is robust enough to
handle dynamically changing or data-dependent access patterns. A classifier module
observes the application-level access stream and generates qualitative descriptions. These
descriptions, combined with quantitative input/output statistics, are used to select and tune
file system policies according to a system-dependent algorithm. Hints can be used in
conjunction with this approach to provide access pattern information that cannot be intuited
from the access stream (e.g., collective input/output).

2. 2.  Performance-Based Policy Selection

Although application access pattern information is a prerequisite for selecting appropriate
file system policies, input/output performance ultimately determines the success of a
particular policy choice. Extrinsic (external) input/output phases that occur when other
applications compete for shared resources are equally important to file system policy
selection, yet are not evident from application access patterns alone. Using a basic feedback
system as a model, we can frame parallel file system policy optimization as a dynamic
steering problem that tracks performance to refine file system policy selection.  This type of
computational steering framework has proven useful in other contexts (e.g. Vetter [8],
Wood [9], Gergeleit [10], and Gu [11].)

In our dynamic steering framework, we monitor performance sensors that encapsulate the
performance of critical file system features, consult access pattern dependent policy
selectors that map changes in input/output performance to potential policy changes, and
invoke system actuators to effect these policy changes. The resulting performance sensor
metrics reflect the influence of our policy reconfiguration.  When coupled with automatic
access pattern detection, this closed loop steering infrastructure can adapt file system
policies to match application access patterns and then tune these policies to the dynamic
availability of system resources.

3.  Portable Parallel File System (PPFS)

PPFS is a portable input/output library designed as an extensible testbed for file system
policies [3]. A rich interface for application control of data placement and file system
policies makes it exceptionally well-suited for our experiments. Below we describe the
PPFS design and extensions that facilitate adaptive file system policy experiments.
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3. 1.  PPFS Design
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Figure 1:  Basic PPFS Design

Figure 1 shows the PPFS components and their interactions.  Application clients initiate
input/output via invocation of PPFS interface functions.  To open a file, the PPFS library
first contacts the metadata server, which loads or creates information about the file layout
on remote disk servers (input/output nodes). With this information, the application is able
to issue input/output requests and specify caching and prefetching policies for all levels of
the system.  Clients either satisfy the requests or forward them to servers (abstractions of
input/output devices). Clients and servers each have their own caches and prefetch engines.
All “physical” input/output is performed through underlying UNIX file systems on each
PPFS server.

In the PPFS input/output model, files are accessed by either fixed or variable length
records, and the PPFS library has an extensible set of interfaces for specifying file
distributions, expressing input/output parallelism, and tuning file system policies.  For
example, the user can specify how file records are distributed across input/output nodes,
how and where they are cached, and when and where prefetch operations should be
initiated.
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3. 2.  PPFS Extensions

The original PPFS interface provides the application with a rich set of manual file system
policy controls and structured data access functions, but the rules guiding their use are ad
hoc.  Ideally, the file system should  automatically infer appropriate policies from low-level
application access patterns, lessening the application programming burden and the
likelihood of user misconfiguration. Dynamic performance data should be used to verify
and refine these policy decisions. Through automatic access pattern classification, used to
select file system policies, and performance-based policy refinement, we automate file
system policy control. This has motivated two basic extensions to the base PPFS design:
support for automatic access pattern classification and automatic policy refinement based on
monitoring input/output performance.

I/O Statistics

  Policy
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Access statistics

  Access
patterns

Policy configuration

To I/O servers

CachePre

User
Code

PPFS Interface

File

File accesses

Figure 2:  PPFS Classification and Policy Selection Extension

We have replaced manual PPFS file system controls in our extension by an adaptive access
pattern classification and file system policy selection mechanism.  During program
execution, an input/output statistics module monitors the file access stream (each access is
represented as a byte offset, read or write, and request size) and computes the statistics
needed by the classifier module. PPFS uses the classification to select and tune prefetching
and caching policies.  Figure 2 illustrates the interaction of the classification extensions
with the original PPFS components.  
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Figure 3:  PPFS Performance Monitoring and Steering Extension

To refine policy selections using performance data, we instrumented the system
components to periodically provide sensor metrics and created sensor-driven selector tables
to automate invocation of the same native PPFS policy controls that a PPFS user could
invoke manually.  Figure 3 shows how our performance based policy selection extension
interacts with the PPFS.  Dynamically computed sensor metrics (e.g., input/output queue
lengths, cache hit ratios, inter-request latencies) are routed to local and global policy
selector tables, where they index appropriate file system policies and parameters for the
system environment.

The local policy selector can only change local policies.  For example, a client selector table
may decide to increase the client file cache space and the number of records to prefetch
ahead.  It cannot change file system policies on other client nodes or on the PPFS servers.
As shown in Figure 3, sensor metrics are also routed to a global selector mechanism that
can select policy parameters for other nodes.  For example, if the write throughput visible
to client nodes for large writes drops below a certain threshold, the clients may elect to
disable caching, and stream data directly to the PPFS servers.  Rather than waiting for the
individual server metrics and selector tables to disable server caching and stream data to
disks, the global selector mechanism detects this input/output phase shift in the clients and
invokes the policy change on the servers.



4.  Automatic Classification and Policy Selection

As described in §3, we have replaced the manual file system controls in PPFS with an
adaptive access pattern classification and policy selection mechanism. Below we describe in
greater detail our classification and policy control methodology.

A file access pattern classification is useful if it describes the input/output features that are
most relevant to file system performance; it need not be perfectly accurate.  For example,
one might classify an input/output pattern as “sequential and write only” even if there are
occasional small file seeks and reads − this would suffice to correctly choose a sequential
prefetching policy. Such a qualitative description is difficult to obtain based on heuristics
alone.  Instead, one needs a general classification methodology capable of learning from
examples.

As a first step toward adaptive file system policies, we have implemented automatic access
classification to select file system policies, adapting to application requirements. This is
only half of the complete system; after making policy selections we rely upon performance
sensor data to refine policy parameters, adapting to the total system environment.
Performance-based steering is the subject of §5.

4. 1.  Classification Methodology

Within a parallel application, file input/output access patterns can be observed at two levels.
The first is at the local (e.g., per thread) level, and the second is at the global (e.g., per
parallel program) level. For example, a parallel file might be distributed across the threads
of a parallel program in such a way that each thread appears to be accessing the file locally
in strides, but the interleaved access stream is globally sequential. Global classifications are
formed from local classifications and input/output statistics. In §4.1.1 we describe our
access pattern classification approach. In §4.1.2 we illustrate how global classification
works in a parallel application.

4. 1. 1.  Access Pattern Classification

To accommodate a variety of underlying file structures and layouts, we describe access
pattern classifications assuming a byte stream file representation. File accesses are made
using UNIX style read, write, and seek operations, and file access patterns are determined
from this representation. Thus, an input/output trace of file accesses may be represented as
a stream of tuples of the form

byte offset request size read write, , /
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Figure 4:  Access Pattern Space

Patterns observed in each of the time-varying values of the tuple components form a three
dimensional access pattern space. Figure 4 shows certain categories along each axis that
can be used to influence file system policy selection and label all points in the access space.
Additional categories can be added as necessary to each axis to further refine the access
pattern space.

 Many techniques can be used to classify and identify observed access patterns within the
space shown in Figure 4.  Our approach is to train a feed-forward artificial neural network
as in Hinton [12] to classify patterns. Although neural networks are expensive to train
initially, once training is complete, classification is very efficient. To train the neural
network, we represent the access pattern in a compact, normalized form by computing
input/output statistics on a small fixed number of accesses, called the classification
window. For example,  representative statistics might be the number of unique read request
sizes, or a transition matrix of the probabilities that one type of request (read/write) will
follow the other.

Table 1:  Input/Output Trace Features

Category Category Features

Read/Write Read Only Write Only Read-Update-Write Read/Write Nonupdate
Sequentiality Sequential 1-D Strided 2-D Strided Variably Strided

Request
S izes

Uniform Variable
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Table 1 shows the features recognized by our trained neural network. These features
correspond directly to planes or regions within the space shown in Figure 4. The neural
network selects one and only one feature within each category; for example, a set of
accesses cannot be both read only and write only. Neural networks are inherently
imprecise, allowing us to train a network to identify patterns that are “close” to a well-
defined pattern in a more general way than specifying heuristics. For example, a pattern
might be treated as read-only if there is only one small write among very large reads, but
read/write if the single write is the same size as the reads. This allows us to train the file
system to classify new access patterns.

4. 1. 2.  Global Access Pattern Classification

Local access pattern classification is only part of a larger classification problem. Local
classifications are made per parallel program thread; however, the local access patterns
within a parallel program merge during execution, creating a global access pattern. Global
knowledge is especially important for tuning file system policies. For example, if all
processors access a single file sequentially, one could potentially improve performance by
employing a caching policy that does not evict a cached block until every processor has
read it.

Our global classification infrastructure is based on an access pattern algebra. We combine
local classifications and other local information to make global classifications. For example,
if all local access patterns are read only, the global access pattern is read only. The number
of processors contributing to the global access pattern is called the cardinality of the
classification. Generally, we attempt to make global classifications with cardinality p,
where p is the number of processors involved in the global input/output. However, a global
classification involving a subset of the these processors is still useful for policy selection.
A partial global classification may even be preferable, if it more accurately represents the
temporal characteristics of the global access pattern.
Global access pattern classification cannot be useful for influencing file system policies
unless we recognize common global access patterns in time to effect policy changes. To
demonstrate that this is feasible, we have examined parallel applications from the Scalable
Input/Output (SIO) application suite [1,2]. These applications exhibit a variety of global
access patterns, including global sequential, partitioned sequential (processors sequentially
access disjoint partitions), and interleaved sequential (individual strided access patterns are
globally interleaved).  The patterns are primarily read-only or write-only with regular and
irregular request sizes. All of these patterns can be recognized by our classification
infrastructure.

One specific application area we have examined is computational fluid dynamics.  PRISM
is a parallel implementation of a 3-D numerical simulation of the Navier-Stokes equations
from Henderson [13,14]. The parallelization is implemented by apportioning slides of the
periodic domain to the processors, with a combination of spectral elements and Fourier
modes used to investigate the dynamics and transport properties of turbulent flow.
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Figure 5 shows a file access timeline for PRISM on a 64 processor Intel Paragon XP/S
running OSF/1 version 1.4.  This code exhibits three distinct input/output phases. During
the first phase, every processor reads three initialization files (m16.rst, m16.rea and
m16.mor).  Each file is accessed with a global sequential access pattern; m16.rst is also
accessed with an interleaved sequential access pattern.  In the second input/output phase,
node zero performs input/output on behalf of all the nodes, writing checkpoints and data
(access to files m16.Rstat, m16.Qstat, m16.Vstat, m16.mea and m16.his).  In the final
phase, the result file is written to disk by all processors in an interleaved sequential access
pattern m16.fld. Phases two and three occur iteratively throughout program execution.

When accesses are adjacent and very small, local classification windows (the time to make
ten input/output accesses) are short, and we must observe more windows to detect overlap
among processors and global behavior.  For example, Figure 5a and Figure 5b show local
classification times for a globally sequentially accessed initialization file (m16.rea).  The
reads are very small (most are less than 50 bytes) and we reclassify the pattern every ten
accesses.  We can make a global sequential classification when sequential access patterns
with overlapping bytes have been detected on every processor. Despite initial startup
asynchronicity, the slowest processor (number 31) completes its tenth access to this file at
7.79 seconds.  Because this initialization input/output phase accounts for approximately
125 seconds of execution time, adapting file system policies to the access pattern is
fundamental to improving performance.
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Figure 5:  PRISM:  File Access Timeline
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Figure 6:  PRISM:  Local Processor Classification Points for Global Sequential
Access Pattern

4. 2.  Intelligent Policy Selection

A file access pattern classification as described above is platform-independent and unique to
a particular application execution. However, an optimal choice of file system policies for a
particular access pattern is system-dependent.  A file system uses the classification to tune
file system policies for each input/output platform.  By making policy decisions to suit the
application requirements and the system architecture, not only is input/output performance
portable over a variety of platforms, but the file system can provide better performance over
a range of applications than it could by enforcing a single system-wide policy. This
adaptivity should occur transparently, without application hints or user level optimizations.

Abstractly, PPFS continuously monitors and classifies the input/output request stream.
This classification is passed to the file system policy suite for policy selection and
configuration.  For example, when the access pattern classification is sequential, the file
system can assume that file access will continue to be sequential. If the classification is read
only, the file system can prefetch aggressively; if it is write only, a write-behind policy
might be efficient.  When the classification is regularly (1-D or 2-D) strided, the file system
can take advantage of this information to adjust the cache size and prefetch anticipated
blocks according to the access and stride sizes.

As described in §4.1.2, we can combine local classifications to make global classifications,
which we use to adjust policies at all system levels with global knowledge. For example,
when all processors read the same file sequentially (global sequential) we can select a
caching policy at input/output nodes that prefetches file blocks sequentially but does not
flush cache blocks until every processor has accessed them. In contrast, if we detect an
interleaved sequential global pattern, each input/output node could prefetch file blocks
sequentially, retaining them only until each has been accessed in its entirety once.
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Figure 7 shows a simple, parameterized example of a policy selection algorithm that selects
PPFS policies for a uniprocessor UNIX workstation. Its default behavior is to favor small
sequential reads, typical of UNIX workloads. However, when the classifier detects other
access patterns, the algorithm adjusts policies to provide potential performance
improvements. Quantitative values for the parameters of Figure 7 (e.g.
LARGE_REQUEST) depend on the particular hardware configuration and must be
determined experimentally.

The algorithm of Figure 7 is but one simple possibility for policy control.  Richer control
structures can be built upon more accurate models of input/output costs.  However, in §4.3
we show that even this simple policy suite suffices to yield large performance increases
over that possible with standard UNIX file policies. In §5 we describe our methodology
for tuning automatically selected policies in response to overall system performance,
closing the classification and performance feedback loop.

 if (sequential) {
       if(write only) {
         enable caching
         use MRU replacement policy
       } else if (read only && average request size > LARGE_REQUEST) {
         disable caching
       } else {
          enable caching
          use LRU replacement policy
       }
 }

 if (variably strided || 1-D strided || 2-D strided {
      if (regular request sizes) {
          if (average request size > SMALL_REQUEST) {
               disable caching
          } else {
             enable caching
             increase cache size to MAX_CACHE_SIZE
             use LRU replacement policy
          }
      } else {
         enable caching
         use LRU replacement policy
      }
 }

Figure 7:  Dynamic File Policy Selection (Example)

4. 3.  Experimental Results

As a validation of automatic behavioral classification and dynamic adaptation, we used the
enhanced PPFS to improve the input/output performance of Pathfinder, a single processor
satellite data processing code.  Pathfinder is from the NOAA/NASA Pathfinder AVHRR
(Advanced Very High Resolution Radiometer) data processing project described in Agbu
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[15]. Pathfinder processing is typical of low-level satellite data processing applications −
fourteen large files of AVHRR orbital data are processed to produce a large output data set.
It is an extremely input/output intensive application; over seventy percent of Pathfinder
execution time is spent in UNIX input/output system calls.

4. 3. 1.  Pathfinder

The goal of the Pathfinder project is to process existing data to create global, long-term time
series remote-sensed data sets that can be used to study global climate change.  There are
four types of Pathfinder AVHRR Land data sets (daily, composite, climate, and browse
images); we consider the creation of the daily data sets.  Each day, fourteen files of
AVHRR orbital data, approximately 42 megabytes each, in Pathfinder format are processed
to produce an output data set that is approximately 228 megabytes in Hierarchical Data
Format (HDF) from NCSA [16]. For simplicity, we examine the processing of a single
orbital data file.

During Pathfinder execution, ancillary data files and the orbital data file are opened, and an
orbit is processed 120 scans at a time. Although the orbit file is accessed sequentially, the
access patterns for other ancillary data files range from sequential to irregularly strided.
The result of this processing is written to a temporary output file using a combination of
sequential and two-dimensionally strided accesses.  Finally, the temporary file is re-written
in HDF format to create three 8-bit and nine 16-bit layers.

Table 2 shows the relative execution times for Pathfinder using UNIX buffered
input/output and PPFS with adaptive policies on a Sun SPARC 670. The dynamic
adaptation of PPFS yields a speedup of approximately 1.87 with the policies Figure 7.1

The PPFS automatic classifier could detect that the output file access pattern was initially
write only and sequential, with large accesses, and that the pattern later changed to write
only, strided, with very small accesses.  Adapting to the first access pattern phase, PPFS
selected an MRU cache block replacement policy. In the second phase it enlarged the cache,
retaining the working set of blocks.

Figure 8a and Figure 8b illustrate the dramatic benefits of dynamic policy adaptation for
Pathfinder’s execution. Both graphs represent the same amount of input/output; however,
in Figure 8a we use the same static policies for all access patterns. The first cluster of
accesses in each graph is the write only sequential phase. Performance for the first phase is
roughly equivalent using either MRU or the default, non-adaptive LRU replacement policy.
However, enlarging the cache in the second phase substantially decreases the average write
duration.  PPFS successfully retains the working set of blocks (the overall cache hit ratio
exceeds 0.99), while UNIX buffered input/output forces a write of 8 KB for every one or
two byte access.

                                                
1 However, due to limited physical memory, we disabled caching for small, variably strided reads.
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Table 2:  Pathfinder Execution Times (seconds)

Experimental
Environment

System
Time

User Time Total

UNIX 1578.2 1781.1 4299.3

P P F S 400.4 1270.4 2300.8

5.  Performance-Based Steering

Although file system policy selection is partially a function of application input/output
access patterns, system performance ultimately determines the success of a particular policy
choice. Performance sensors provide feedback on file system behavior that can be used to
optimize the parameters of policy decisions.

Below, we describe a complement to qualitative access pattern classification: sensor based,
closed loop policy selection and configuration.  As described in §2.2 and shown in Figure
3, our framework partitions the steering problem into three components. The sensor
metrics in §0 provide input for policy selectors of §Error! Reference source not
found. which, based on system and application performance history, select policy
parameters and activate them via the policy actuators of §5.3.
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5. 1.  Performance Sensors

Table 3:  PPFS Sensor Metrics

Dimension Description

Operation Count

Operation Time

Total number of input/output requests

Mean operation service time

Read Count

Read Byte Count

Read Time

Number of read requests

Number of bytes read

Mean read service time

Write Count

Write Time

Number of write requests

Mean write service time

Cache Hits

Server Cache Hits

Cache Check Time

Number of requests serviced by caches

Number of requests serviced by offnode caches

Time to check local cache

Server Time

Server Queue Time

Server Queue Lengths

Time spend on input/output servers

Time spend in disk queue

Length of disk queue

Prefetch Byte Count

Prefetch Cache Check Time

Prefetch Off Node Time

Hit Miss Time

Number of bytes prefetched

Time to scan cache on prefetch initiation

Time spent offnode for prefetch operations

Time spent waiting for overlapped prefetch to complete

To capture input/output performance data, we augmented PPFS with a set of performance
sensors that are periodically sampled using the Pablo instrumentation library of Reed [17].
Table 3 shows the current PPFS sensor metrics.  We chose these particular metrics because
they are inexpensive to calculate, and we believe they are broad enough to reflect the
performance of malleable file system policies within PPFS. In practice, many metrics are
strongly correlated with others, magnifying or validating trends detected via other metrics.

5. 2.  Policy Selectors

Table 4:  Sample Sequential Access Selectors

Sensor Conditions Policy Options

(poor_read_service_times) &

(many_read_requests) &

(managable_byte_throughput) &

(NOT high_hit_ratio)

Increase Cache Size

Increase Prefetch Amount

(NOT managable_byte_throughput) &

(low_hit_ratio)

Decrease Cache Size

Disable Prefetch
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Given detailed performance sensor metrics and an access pattern classification, our
framework tunes file system policies using the sensor metrics as the indices to a selector
table containing policy parameters for that set of sensor metrics.  The dashed lines of
Figure 1 show the flow of sensor data from PPFS modules to the policy selectors.  Table 4
shows some sample selectors that a system might provide, given a sequential access pattern
classification.  For example, if the sensor metrics indicate that relatively small read requests
take a long time and the cache hit ratio is low, we might increase the cache size and the
number of blocks prefetched to anticipate the request stream.  If the sensors indicate that
too much data is being requested to effectively cache and prefetch, we may disable caching
and prefetching altogether to avoid thrashing the cache.

The sensor rules shown in Table 4 are qualitative rather than quantitative.  We quantify the
selector table rules when we calibrate them with the specific sensor metrics for a given
platform. For example, on an IBM SP/2 with 128 MB of memory per node
manageable_byte_thruput may calibrate to (Read_Byte_Count2 < 100 MB/second).
Similarly on an Intel Paragon with only 32 MB of memory per input/output node, the
calibration may be (Read_Byte_Count < 25 MB/second).

To create selector tables for a given access pattern, we need to know how different file
system policies perform for this access pattern. By executing access pattern benchmarks
with a variety of policies and under a variety of load conditions, we can develop a set of
selector rules such as those shown in Table 4.  We calibrate the qualitative rules on a given
platform by storing the quantitative performance sensors with the qualitative rules.  Our
portable, dynamic steering infrastructure can then adapt to a system’s resource constraints
by simply loading selector tables calibrated for that system.

5. 3.  Policy Actuators

After the policy selector mechanism determines what file system policy   parameters should
be used, actuators provide the mechanism to instantiate   policies and configure parameters.
Currently, PPFS supports   actuators that allow dynamic reconfiguration of cache sizes,
replacement   policies, and prefetch and write behind parameters  on each client   and server
node.  These actuators provide a rich variety of controls to our   dynamic steering
infrastructure.  We have tested these controls by interactively steering application behavior
based on a virtual reality display of the sensor metrics as in Reed [18].

5. 4.  Experimental Results

To demonstrate the efficacy of sensor-based adaptive control when coupled with behavioral
assertions, we used an input/output benchmark to conduct a set of simple experiments on
several parallel architectures. We had several fundamental goals for the benchmark study.
First, we wanted to verify that sensor metrics help us make improved PPFS policy

                                                
2 Note that Read_Byte_Count is a sensor metric from Table 3.
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decisions. We also wanted to determine how long we have to wait between  policy changes
to allow the sensor metrics to settle to their new steady state values.

In our benchmark, a group of tasks reads disjoint interleaved portions of a shared file.
Task i reads all blocks, i modulo the number of tasks (e.g., task 0 of p tasks reads file
blocks 0, 2p, p, …)  Between accesses, a processor computes for a uniform random
interval with a parametric mean.  We executed this benchmark on several parallel
architectures with a variety of request sizes, prefetching options, and computation
overheads for varying numbers of reader tasks.
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Figure 9:  Sensor Variation for Different Workloads

Figure 9 shows the effect on server request overhead3 of varying the inter-access
computation interval and the number of nodes reading a file.  This experiment was
performed on an Intel Paragon XP/S using a single input/output server controlling a RAID-
3 disk array with a throughput of 3.1 MB/second. In Figure 9a, eight processors read the
file and the PPFS server prefetches only sixteen KB ahead of the access stream.  In Figure
9b, on the other hand, the PPFS server prefetches 256 KB ahead and clients wait on
average 175 milliseconds in between each access.  The PPFS server performance depends
on the number of requests arriving at the server each second.  In Figure 9a, the arrival rate
varies from 27 to 54 requests per second.  Similarly, in Figure 9b, the request arrival rate
varies from 6 to 92 requests per second.

The sensors values in Figure 9 fall into three basic categories.  As shown in the top of
Figure 9a, most of the requests could result in cache misses coupled with long queuing
delays where the server time exceeds ten milliseconds.  A substantial increase in the amount

                                                
3 Server request overhead is the time that a request spends on the PPFS server node.  It includes cache check

time, buffer copy overhead, and disk queuing times if the request is not in the server cache.
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of prefetching is required to alleviate this problem. When some of the requests result in
cache misses, we see that the server time is between four and six milliseconds.4  A
moderate increase in the number of blocks prefetched should result in improved
performance. Finally, at the bottom of Figure 9b, we see that when all of the requests can
be serviced from the cache, the mean time spent on the PPFS server is less than one
millisecond.

Table 5:  Benchmark Selector Rules

Sensor Conditions Policy Options

Quantitative Rules

(large_server_times) &

(many_read_requests)

Substantially Increase

Prefetch Amount

(moderate_server_times) &

(many_read_requests)

Moderately Increase

Prefetch Amount

Quantitative Calibration

(MEAN_SERVER_TIME > 8 MS) &

(READ_REQUEST_COUNT >40)

Substantially Increase

Prefetch Amount

(READ_REQUEST_COUNT > 40 &

(MEAN_SERVER_TIME > 2 MS) &

(MEAN_SERVER_TIME < 8 MS)

Moderately Increase

Prefetch Amount

Based on the figure, we can develop the two simple selector rules shown in Table 5 for this
benchmark access pattern.  One rule detects when the prefetch parameters should be
increased considerably while the other detects when the prefetch parameters should be
increased slightly.  To calibrate these rules for the Intel Paragon with a single RAID-3 disk
array, we simply augment the selector table with the appropriate sensor values as shown at
the bottom of the Table 5.  When the calibrated selector table is used for an application that
exhibits this access pattern, the steering infrastructure can detect poor PPFS server
performance and increase the prefetch parameters appropriately.5

                                                
4 In Figure 9b, the startup transient lasts about sixty seconds before these cache misses occur regularly.
5 The rules in Table 5 are examples of a subset of the needed rules for this benchmark.  A complete set of

rules could also reduce the amount of prefetching performed when the sensors indicate that resources were

being wasted.

6.  Related Work

Current work in parallel file systems centers on understanding application input/output
requirements and determining how to consistently deliver close to peak input/output
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performance. This challenge necessitates re-examining the traditional interface between the
file system and application.

Characterization studies have revealed a large natural variation in input/output access
patterns. During the past two years, our group and others have used the Pablo input/output
analysis software to study the behavior of a wide variety of parallel applications on the Intel
Paragon XP/S [1,2] and IBM SP/2. We have determined from these application studies that
high performance applications exhibit a wide variety of input/output request patterns, with
both very small and very large request sizes, reads and writes, sequential and non-
sequential access, and a variety of temporal variations.

Given the natural variation in parallel input/output patterns, tailoring file system policies to
application requirements can provide better performance than a uniformly imposed set of
strategies.  Many studies have shown this under different workloads and environments
[5,6,7].  Small input/output requests are best managed by aggregation, prefetching,
caching, and write-behind, though large requests are better served by streaming data
directly to or from storage devices and application buffers. There are several approaches to
application policy control; these can be grouped into systems that offer explicit policy
control (e.g. SPIN from Bershad [19], exokernel from Engler [20], the Hurricane File
System from Krieger [21], and Galley from Nieuwejaar [22]), and implicit policy control,
via hints [4], expressive user interfaces (e.g., ELFS [7] and collective input/output as in del
Rosario [23] and Kotz [24]), or intelligent modeling of file access (e.g., Fido from Palmer
[25] and knowlege based caching from Korner [26]). Fido is an example of a predictive
cache that prefetches by using an associative memory to recognize access patterns over
time. Knowledge based caching has been proposed to enhance cache performance of
remote file servers.

The second component of our research, dynamic performance based steering, has been
used successfully in many contexts. A natural analog to explicit policy control is interactive
steering, where the steering infrastructure extracts run time sensor information from an
application, presents this information to the user who selects system or application policies,
and actuates these policies to change application behavior. Falcon as in Gu [27] and
SciChem from Parker [28] are two representative examples of this interactive approach.

In contrast to interactive steering environments, automatic steering environments do not
require continuing user involvement. Instead, steering decisions are made automatically
without user intervention. DIRECT [10], Falcon [29,30] and the Meta Toolkit [9] all
provide automatic steering interfaces. DIRECT targets real time applications, a domain
where the primary concern is validating that the system meets real-time constraints. This
goal is different from run-time performance improvement, but the steering infrastructure is
similar.  Automated run-time steering is used in Falcon to select different mutual exclusion
lock configurations based on the number of threads blocked on the lock [30]. The Meta
Toolkit provides a framework for performing dynamic steering and provides special guards
that help to maintain mutual exclusion of critical state variables [9] that may be changed
during actuator execution.  When an actuator is invoked, the appropriate guards are
executed before the system module is modified.  
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7.  Conclusions

The wide variety of irregular access patterns displayed by important input/output bound
scientific applications suggests that optimizing application performance requires a judicious
match of resource management policies to resource request patterns. Because the
interactions between dynamic, irregular applications and system software change during
application execution, we believe that the solution to this performance problem is adaptive
file system policies that are controlled by user-level access patterns and by system-level
performance metrics.

In this paper, we described a prototype of an adaptive file system and presented the results
of experiments demonstrating the viability of this approach. This prototype, built upon on
our PPFS user-level parallel file system, selects and configures file caching and prefetching
policies using both qualitative classifications of access patterns and performance sensor
data on file system responses.

In the coming months, we plan to more tightly couple automatic access pattern
classification with performance steering. We are currently rounding out the prototype by
extending PPFS to perform run time global access pattern classification and enhancing the
performance-driven steering infrastructure.
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